Cochlear Implantation

Edward Milligan, MD
Director of Otolaryngology-Head and Neck Surgery
OBVAMC
Goals

• Overview of hearing pathology
• Review of types of hearing loss and rehabilitative options for each type, including hearing aids, cochlear implants and bone conduction hearing aids (BAHA)
• To gain a basic understanding of cochlear implantation, including technology, patient selection and surgery
Review of the auditory pathway
Hearing loss can occur anywhere along this peripheral pathway.
Central auditory pathway

- **E.C.O.L.I.**
- **E:** CN VIII
- **C:** Cochlear nucleus
- **O:** superior olive
- **L:** lateral lemniscus
- **I:** inferior colliculus
- Auditory cortex: superior temporal gyrus
Two types of hearing loss

Conductive hearing loss: Outer or Middle ear (a blockage or problem with the bones)

Sensorineural hearing loss: Inner ear, cochlear nerve or brain
Etiology of Conductive hearing loss

<table>
<thead>
<tr>
<th>Outer ear</th>
<th>Middle ear</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cerumen</td>
<td>• Tympanic membrane abnormality (eg. Perforation)</td>
</tr>
<tr>
<td>• Infectious (otitis externa or “swimmers ear”)</td>
<td>• Ossicular abnormality (eg. Otosclerosis)</td>
</tr>
<tr>
<td>• Tumor or mass</td>
<td>• Infectious: otitis media</td>
</tr>
<tr>
<td>• Foreign body</td>
<td>• Cholesteatoma</td>
</tr>
<tr>
<td>• Congenital or acquired stenosis of external auditory canal</td>
<td>• Tumor or mass in middle ear (eg. Paraganglioma or glomus tumor)</td>
</tr>
<tr>
<td>• Congenital atresia</td>
<td>• Temporal bone trauma/fracture</td>
</tr>
<tr>
<td>• Temporal bone trauma/fracture</td>
<td>• Eustachian tube dysfunction</td>
</tr>
</tbody>
</table>
Sensorineural hearing loss

Bones of the Middle Ear

Inner Ear

Ear Drum
Anatomy Review

- Tympanic membrane
- Middle ear space
- Tympanic membrane
- Ossicles
- Cochlea
- Cochlear nerve
- Semicircular canals
- Eustachian tube
- Cross-section
Cochlea ~ derived from Latin meaning “snail”
Anatomy of the Cochlea

- Cochlea: 2 ½ turns in humans
- 3 fluid filled compartments
 - Scala vestibuli (perilymph)
 - Scala media (endolymph)
 - Scala tympani (perilymph)
- Organ of Corti is located in the scala media converts acoustic signals to electrical impulses and transmits them to the cochlear nerve
- Central modiolus which houses spiral ganglion neurons from the cochlear nerve
Anatomy of the Cochlea
Cross section of the Cochlea with arrow at the hair cells
Cilia of hair cells are embedded in tectorial membrane. Movement of the basilar membrane causes cilia to move, opening K channels and changing electrolyte composition. Electrolyte shifts lead to a receptor potential → action potential in the spiral ganglion cell dendrites thereby converting acoustic sound to electrical impulses.
Cells of the inner ear are like piano keys with each one corresponding to a different frequency.
Tonotopic organization

- Base: high frequency
- Apex: low frequency

Physical properties of the basilar membrane allow different frequencies to attain maximal amplitude at different positions.
Different causes of hearing loss may preferentially affect different parts of the cochlea and therefore different frequencies.

- Noise damage affects high frequencies.
- Meniere’s disease first affects low frequencies.
Many etiologies of Sensorineural hearing loss….

- Congenital
- Inflammatory
- Infectious
- Ototoxicity
- Noise-induced
- Presbyacusis (age-related)
- Sudden SNHL (idiopathic)
- Vascular ischemia
- Auto-immune
- Meniere’s disease
- Intra-cranial tumor or mass
Sensorineural hearing loss most often affects the cochlea.
SNHL is predominately localized to one anatomic location: Inner hair cells

- SNHL can be attributed to damage or loss of the inner hair cells in >95% of individuals with SNHL.
- Intra-cranial tumors, cerebrovascular disease are possible, but infrequent causes of SNHL.
Mixed hearing loss

Combination of conductive and SNHL

- Problems with the outer or middle ear and in the inner ear
- Combination of sensorineural and conductive hearing loss
- May include possible causes from sensorineural hearing loss and conductive hearing loss
Hearing loss can be in one or both ears and does not have to be from the same cause.

Single-Sided Deafness (Unilateral Profound Hearing Loss)

- No hearing or very little hearing in one ear and normal hearing in the other ear.
- Commonly caused by: sudden deafness, birth defects, genetics, head trauma, Meniere’s disease, ototoxicity.
How is the type and degree of hearing loss diagnosed?

Behavioral AUDIOGRAM (gold standard)
Degrees of Hearing Loss

<table>
<thead>
<tr>
<th>Degree of hearing loss</th>
<th>Softest sound able to be heard (in decibels)</th>
<th>Frame of reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>26 to 40 dB</td>
<td>Able to hear the loud or more intense vowel sounds, but may miss some of the softer consonant sounds, have difficulty hearing soft spoken people and young children and may have to ask people to speak up or repeat themselves on occasion</td>
</tr>
<tr>
<td>Moderate</td>
<td>41 to 55 dB</td>
<td>In addition to missing consonant sounds, vowel sounds then become more difficult to hear. People often comment that without hearing aids they hear, but can't always understand</td>
</tr>
<tr>
<td>Moderately Severe</td>
<td>56 to 70 dB</td>
<td>Without hearing aids, speech becomes inaudible, whereas with hearing aids, speech may still be difficult to understand</td>
</tr>
<tr>
<td>Severe</td>
<td>71 to 90 dB</td>
<td>Without hearing aids, speech is inaudible, but loud sounds like a baby crying or a dog barking are audible. Hearing aids may no longer be enough for people with severe hearing loss</td>
</tr>
<tr>
<td>Profound</td>
<td>91+ dB</td>
<td>Without hearing aids, speech is inaudible, but very loud sounds like a lawn mower or jet airplane are audible. Hearing aids may no longer be enough for people with profound hearing loss</td>
</tr>
</tbody>
</table>
Speech Discrimination Testing: % correct, words presented above threshold
Treatment for hearing loss

- Treatments depend on the type and degree of hearing loss

- *The patient cannot choose the type of treatment used, the hearing loss determines this*
Treatment options for Hearing Loss

Hearing Aids
Various types of hearing loss

Cochlear Implant
Sensorineural hearing loss

The Baha® System (direct bone conduction)
Conductive hearing loss, mixed hearing loss, and single-sided deafness
How a Hearing Aid Works
Cochlear implants:

- When there is too little cochlear reserve (i.e., the remaining hair cells are not functioning), a hearing aid is not enough.
- These patients are CI candidates.
- In general, CI are considered for severe-profound SNHL (when hearing aids are not adequate).
What is a cochlear implant?

- A cochlear implant is a surgically implanted electronic device that allows restoration of sound perception by bypassing the inner hair cells and transmitting electrical impulses directly to the auditory nerve through a surgically implanted, intra-cochlear electrode.
Cochlear Implant

• Invented in 1961 by William House, MD (“Father of neurotology”) and simultaneously by Professor of Engineering Graeme Clark

• Consists of 2 parts:
 ▫ externally worn processor
 ▫ Surgically implanted device

• Standard of care for individuals with moderately-severe to profound SNHL
 ▫ adults
 ▫ children
How Does it Work?

1. The **internal implant** is placed just under the skin, behind the ear.

2. The external **sound processor** sits behind the ear.
How a cochlear implant works:

1. The external sound processor captures sound and converts it into digital signals.

2. The processor sends digital signals to the internal implant.

3. The internal implant converts signals into electrical energy, sending it to an electrode array inside the cochlea.

4. The electrodes stimulate the hearing nerve, bypassing damaged hair cells, and the brain perceives signals; you hear sound.
Who is a candidate for a cochlear implant?

- Adults or children with moderate-severe to profound SNHL bilaterally who receive inadequate benefit from hearing aids
- Medically able to undergo procedure and follow up (programming, rehab.)
- Understanding of the process and post operative course
- No minimum or maximum age
- **Absolute contraindication**: absence of the cochlea or cochlear nerve (cochlear nerve aplasia)
Cochlear implant surgery

- A routine outpatient procedure – it is NOT brain surgery
- Performed under general anesthesia
- About 2 hours surgical time
- Requires minimal or no hair shaving
- Involves a small incision with low post-operative pain
- Major complications are rare
Pre-incision: non-sterile field
Incision (and fibro-periosteal flap)
Cochlear implant surgery

- Drill the mastoid bone until reach the inner ear
- Careful of many landmarks:
 - Brain
 - Sigmoid sinus
 - Semicircular canals
 - Facial nerve
Cochlear implant surgical procedure

- Tegmen
- Sino-dural angle
- FN
- L
- P
- SS
Enter the middle ear through the mastoid via a “facial recess approach”
Secure the receiver stimulator under the skin
Cochleostomy with endostium exposed
Electrode insertion
After surgery: Speech processing

- Externally work speech processor converts receives acoustic sound and converts it to electrical signals
- This coding strategy allows stimulation of various electrodes within the intra-cochlear electrode array
- Various speech coding and processing strategies allow the implant to be customized to maximize each patient’s understanding of speech
Outcomes: generally excellent

• Post-lingually deafened adults (and individuals deafened after age 4)
• Speech understanding in quiet environments
• Able to use the telephone, watch tv without closed captioning
• Continual improvement over time
• Ongoing technological improvements
What if you have:

1) severe hearing loss on only one side (*single-sided deafness*)
2) can’t wear a hearing aid due to infection?
3) or have a conductive hearing loss that can not be fixed with surgery
Then a Bone conduction hearing aid is used (BAHA)
How Does it Work?

1. The **titanium implant** is placed in the bone just behind the ear.

2. The external **sound processor** connects to the implant via the abutment.
Baha System Components

A direct bone conduction system has three parts:

Baha 3 Sound Processor
- Picks up sound and converts to vibration

Abutment
- Transfers vibrations from sound processor to implant

Implant
- Titanium - placed in bone behind ear where it osseointegrates and transfers vibrations directly to cochlea via bone conduction
BAHA Surgery

• A routine outpatient procedure – often done under LOCAL anesthesia
• About 20 minutes surgical time
• Low post-operative pain
• Major complications are rare
Burden of hearing loss

One in every 10 Americans experience some form of hearing loss\(^1\)

That’s about 38 million people!\(^2\)
Hearing Loss in the U.S. (estimated)

- Total hearing loss: 38 million
- Potential implant candidates:
 - 1 - 1.2 million bilaterally severe-profound and profound
 - 1 million SSD, mixed and conductive
- Total implanted population: ~200,000 for all cochlear implant devices

1. www.chchearing.org/about-hearing-loss/understanding-hearing-loss
Hearing loss burden in veterans...

- Hearing loss and tinnitus are among the **TOP 2** medical complaints of returning OIF and OEF veterans
- Aging veterans are living longer and experiencing progressive hearing loss
- **Increasing burden** of hearing loss in coming years among veterans of all ages
Benefits of cochlear implants extend beyond hearing...

- **Cost-effectiveness and quality of life metrics associated with CI** has been **well-proven for ALL ages**
- For younger veterans, CI allows improved speech understanding which leads to:
 - Retention of employment
 - Ongoing re-education/job training
 - Decreased depression/anxiety
 - Ability to undergo treatment for PTSD
 - Decreased isolation
Benefits beyond hearing...

• For elderly patients, CI allows:
 ▫ Ability to remain in own home
 ▫ Improved ability to perform ADLs
 ▫ Overall improved metrics of health
 • Can understand and interact with their healthcare provider
 ▫ Recent research suggesting improved cognitive function/reduction of dementia
Current (and future) hearing rehabilitative options at OBVAMC

Hearing Aids
- Various types of hearing loss

Cochlear Implant
- Sensorineural hearing loss

The Baha® System (direct bone conduction)
- Conductive hearing loss, mixed hearing loss, and single-sided deafness

Future direction
Thank you!

Any questions?